A
HRISTM/S
C’@ﬂ@

The Spectres of the Past, Present, and Future

Claudio Canella Daniel Gruss
Moritz Lipp Michael Schwarz

—

Acknowledgements [G?l"-iﬁ

‘MEMORIES

Background music for the choir song kindly provided by
Kerbo-Kev.

Cooking photos kindly provided by Becca Lee (ladyfaceblog).
Santa Clause images by http://www.thevectorart.com/

Some picture components are included from "Mickey's Christmas
Carol" under fair use.

Acknowledgements I e

‘MEMORIES

We want to thank our collaborators: Anders Fogh, Benjamin von
Berg, Daniel Genkin, Dmitry Evtyushkin, Frank Piessens, Jann Horn,
Jo Van Buick, Mike Hamburg, Paul Kocher, Philipp Ortner, Stefan
Mangard, Thomas Prescher, Werner Haas, and Yuval Yarom.

The research behind this talk was partially funded by a generous
gift from ARM and a generous gift from Intel. Any opinions,
findings. and conclusions or recommendations are those of the
authors and do not necessarily reflect the views of the funding
parties.

Performance is awesomel! KT H.

‘MEMORIES

Performance is awesome!

‘MEMORIES

intgl

PENTIUM=PRO

Performance is awesome!

‘MEMORIES

e 1995

intgl.

PENTIUM=PRO

Performance is awesome!

‘MEMORIES

o 1495
e IS0 MHz

intgls

PENTIUM=PRO

awesome! ""w

‘MEMORIES

Performance is

- 1995
o 150 MHz
e RISC emulating CISC

intgle

awesome! e

‘MEMORIES

Performance is

- 1995
intgl. o 150 MHz
e RISC emulating CISC

o 256KB L2 cache integrated!

REFRESHING

Performonce is g

‘MEMORIES

« 1995

o I50 MHz

o RISC emulating CISC

o 256KB L2 cache integrated!
« branch prediction

REFRESHING

Performonce is owesome!
o 1995
il‘l‘l’ela o BOMHz
PENTIUMqPRO o RISC emulating CISC

o 256KB L2 cache integrated!
« branch prediction
« out-of-order execution

More and More Performance e

‘MEMORIES

The future is going to be fast:

and More Performance e

‘MEMORIES

NMore

The future is going to be fast:
———9 « Apple Al2 Bionic (iPhone X): I6KB pages — 128KB

e caches

A
HRISTM/S
C’@ﬂ@

SPECTRES OF

THE Psst \3

annel Attacks e

‘MEMORIES

« Bug-free software does not mean safe
execution

hannel Attacks e

‘MEMORIES

« Bug-free software does not mean safe
execution

o Information leaks due to underlying hardware

hannel Attacks e

‘MEMORIES

« Bug-free software does not mean safe
execution

o Information leaks due to underlying hardware
« Exploit leakage through side-effects

hannel Attacks e

‘MEMORIES

« Bug-free software does not mean safe
execution

o Information leaks due to underlying hardware
« Exploit leakage through side-effects

& v B

Power Execution
consumption time CPU caches

nnnnnnnnnn

Architecture and Microarchitecture Kb
‘MEMORIES

« Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, ...)

Architecture ond Microarchitecture e

‘MEMORIES

« Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, ...)

o Interface between hardware and software

Architecture and Microarchitecture e

‘MEMORIES

« Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, ...)

o Interface between hardware and software
o Microarchitecture is an ISA implementation

Architecture ond N

licroorchitecture K

« Instruction Set Architecture (ISA) is an abstract
model of a computer (x86, ARMv8, SPARC, ...)

o Interface between hardware and software
o Microarchitecture is an ISA implementation

@ ’"""’"‘ e0e

“core"i7 RO “Yeon™

Elements e

‘MEMORIES

Miecroorchitecturgo

o Modern CPUs contain muitiple
microarchitectural elements

Elements e

‘MEMORIES

Miecroorchitecturgo

o Modern CPUs contain muitiple
microarchitectural elements

S O kbnT 3

/==
Caches and 8
buffer Predictor

lements G]-:%

‘MEMORIES

Microarchitectural

o Modern CPUs contain muitiple
microarchitectural elements

S Qb K

/==
Caches and 8
buffer Predictor

o Transparent for the programmer

Elements G]-i-%

‘MEMORIES

Miecroorchitecturdl

o Modern CPUs contain muitiple
microarchitectural elements

S O kbnT 3

/==
Caches and 8
buffer Predictor

o Transparent for the programmer
« Timing optimizations — side-channel leakage

T A
S Aa - s

1337 4242

FOOD CACHE

Revolutionary concept!

Store your food at home,
never go to the grocery store
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

$1,299

ORDER VIA PHONE: +555 12345

éé Ofdie 304 M3

1

What could possibly go wrong with <insert x86
instruction here>?
Side effects include side-channel attacks and bypassing kernel ASLR

&8 Clémentine Maurice and Meritz Lipp

a3

%2 308 M2

What could possibly go wrong with
<insert x86 instruction here>?

Clémentine Maurice, Moritz Lipp
December 2016—33rd Chaos Communication Congress

CPU Cache e

‘MEMORIES

SEEEE
printf("%d", i);

i1l
LR R

ranEt (Uhd",)Y

CPU Cache e

Qc/)
P (" 44" Y 4)5 w}
ranEt (Uhd",)Y

1Tt

CPU Coche

Ca
DR U T(A Y 4)5

ranEt (Uhd",)Y

c

e ”?[SS

““““

—Tiss =

il

‘MEMORIES

Cacy, HHH
P (" 44" Y 4)5 Misg

WEADET ("d 4 A)Y i

et

CPU Coche

Ca
DR U T(A Y 4)5

ranEt (Uhd",)Y

c

e ”?[SS

—Jlss

vvvvv

REFRESHING

£ 5K

‘MEMORIES

CPU Coche

Ca

(o —

€ ”7[33 —

BT A Y 4)S T

PranET (Tdd A N——

Cache hit

REFRESHING

£ 5K

‘MEMORIES

CPU Cache
DRAM access,

slow

L
Cac ML pam
DR U T(A Y 4)5 —%}
et (YAl A N ——

Cache hit

REFRESHING

£ 5K

‘MEMORIES

CPU Cache
DRAM access,

slow

o AENEE

% -
o,
PRETr (YAt y 4)5 —%—
PRamET (%dt s A Ve
Cache hit

\— No DRAM access,

much faster

REFRESHING

£ 5K

‘MEMORIES

REFRESHING

aching speeds up Memory Accesses CH

Number of accesses

10°

10°

10°

‘MEMORIES

0 cache Hits

M HHMMMMH_ﬂunnuﬂuuuﬂﬂuuu____uu S

B NS

T T

T T — — T
100 150 200 250 300 350 400
Access time [CPU cycles]

REFRESHING

ooooo

Flush+Relog

Attacker

Shared Memory

LU
}_V
(T

1111

Vic tim

REFRESHI iNG

LEE)

‘MEMORIES

Flush+Relog

Attacker

Shared Memory

ITNnT

paqooj
1411
cached

B

Shared Memory

Vic tim

REFRESHING

LEE)

‘MEMORIES

Flush+Relog

Attacker

flush

Shared Memory

Shared Memory

Vic tim

REFRESHI iNG

LEE)

‘MEMORIES

Flush+Relog

Attacker

flush

Shared Memory

N

e

Irirl

Vic tim

REFRESHI iNG

LEE)

‘MEMORIES

Flush+Relog

Attacker

Shared Memory

REFRESHI iNG

LEE)

‘MEMORIES

Vic tim

aCCeSS

Flush+Relog

Attacker

Sha

red Memory

REFRESHING

LEE)

‘MEMORIES

111

Shared Memory

Vic tim

aCCeSS

Flush+Relog

Attacker

aCCeSS

Shared Memory

Shared Memory

Vic tim

REFRESHING

LEE)

‘MEMORIES

Flush+Relog

Attacker

aCCeSS

\

Shared Memory

5 = £

Victim accessed
(fast)

Shared Memory

Vic tim

Victim did not access

(slow)

REFRESHING

LEE)

‘MEMORIES

Attacks

e

_l
pror)
[~>____J]

EEEEEEEEE

'CZ::H

‘MEMORIES

« Just by looking at cache hits/misses, we can ...

Attacks

Q0
Y=

S |
pror)
[~>____J]

REFRESHING

‘MEMORIES

« Just by looking at cache hits/misses, we can ...
o Leak AES keys from the cache

Attacks

Q0
Y=

S |
LTI ¢
[~>____J]

REFRESHING

LEE)

‘MEMORIES

« Just by looking at cache hits/misses, we can ...

o Leak AES keys from the cache
« Leak keystroke timings via the cache

Attacks

Q0
Y=

T)
LTI ¢
[~>____J]

REFRESHING

LEE)

‘MEMORIES

« Just by looking at cache hits/misses, we can ...
o Leak AES keys from the cache
« Leak keystroke timings via the cache
« Covertly send data through the cache

Attacks

Q0
Y=

T)
LTI ¢
[~>____J]

REFRESHING

LEE)

‘MEMORIES

« Just by looking at cache hits/misses, we can ...

o Leak AES keys from the cache
« Leak keystroke timings via the cache
o Covertly send data through the cache

[] Browsern CIOUd. TEES. eeoe

A 87%0 1557
: . |shell@zeroflte:/data/local/tmp $./keyboard_spy -c 0
o/ &

NMore

and More Performance e

‘MEMORIES

The future is going to be fast:

— caches

———9 « Apple Al2 Bionic (iPhone X): I6KB pages — 128KB

REFRESHING

More and More Performaonce K

—:_—9

‘MEMORIES

The future is going to be fast:

« Apple Al2 Bionic (iPhone X): I6KB pages — 128KB
caches

« Intel — more out-of-order parallelism

C)HI{LST MJS

Grot
%@Em \3

SPECT

int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);
int area = width * height;

printf ("Area %d x %d = %d\n", width, height, area);

int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);
int area = width * height;

(printf("Area %d x %d = %d\n", width, height, area);

Out-of-Order Execution

Instructions are
o fetched and decoded in the front-end

REFRESHING

‘MEMORIES

REFRESHING

Ovut-of-Order Execution K H

‘MEMORIES

1

Instructions are
o fetched and decoded in the front-end
« dispatched to the backend

Out-of-Order Execution nsuiu«

‘MEMORIES

1

Instructions are
« fetched and decoded in the front-end
« dispatched to the backend
» processed by individual execution units

Building the Code

REFRESHING

LEE)

‘MEMORIES

o An experiment

*(volatile charx) O0;
array [84 * 4096] = O0;

Building the Code e

‘MEMORIES

o An experiment

*(volatile charx) O0;
o array [84 * 4096] = O0;
« volatile because compiler was not happy

warning: statement with no effect [-Wunused-valuel]
(charx)0;

Building the Code e

‘MEMORIES

o An experiment

*(volatile charx) O0;
o array [84 * 4096] = O0;

« volatile because compiler was not happy

warning: statement with no effect [-Wunused-valuel]
(charx)0;

« Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile charx)O0;

Building the Code -[;'.'1-'-:

‘MEMORIES

« Flush+Reload over dll pages of the array

Q
? 7 St 500
o — Y400
; : S 300 '
g 200 5
zso zoo 250

Page

Building the Code e

‘MEMORIES

« Flush+Reload over dll pages of the array

207

Access time
[cycles]

L | L 7
0] 50 100 I50 200 250
Page

« "Unreachable” code line was actually executed

Building the Code e

‘MEMORIES

« Flush+Reload over dll pages of the array

500
400
300
2

00
0] 50 100 I50 200 250
Page

207

Access time
[cycles]

« "Unreachable” code line was actually executed
o Exception was only thrown afterwards

REFRESHING

Building the Code Kb
MEMORIES
O Out-of-order instructions leave
o8 microarchitectural fraces

Building the Code e

‘MEMORIES

O Out-of-order instructions leave
s y microarchitectural traces

k‘ “ ? « We can see them for example in the cache

Building the Code

S
kA

o Out-of-order instructions leave
microarchitectural fraces

« We can see them for example in the cache
» We cdll them fransient instructions

REFRESHING

LEE)

‘MEMORIES

Building the Code

S
kA

o Out-of-order instructions leave
microarchitectural fraces

« We can see them for example in the cache
» We cdll them fransient instructions
o Execution indirectly observable

REFRESHING

7K

‘MEMORIES

address

REFRESHING

(K

‘MEMORIES

on oddress

2

e

REFRESHING

i K

‘MEMORIES

Loading

on oddress

o Add another layer of indirection to test

char data = *(charx*) Oxffffffff81a000e0;
array [data * 4096] = O0;

REFRESHING

7K

‘MEMORIES

Building the Code e

‘MEMORIES

o Add another layer of indirection to test

char data = *(char*) Oxffffffff81a000e0;
¢- array [data * 4096] = O0;

« Then check if any part of array is cached

Building the Code

2

« Flush+Reload over dll pages of the array

500

L'

300

200 + A— -+

0 50 100 150 200 250
Page

Access time
[cycles]

of cache hit reveadls data

[]
=
=
o
®
¢

ae

REFRESHING

7K

‘MEMORIES

Building the Code e

‘MEMORIES

« Flush+Reload over dll pages of the array

500
L'

300

200+ 5

Access time
[cycles]

0 50 100 IS0 200 250
Page

o Index of cache hit reveadls data
o Permission check fadils sometimes

2

e01d8150: 69 6¢c 69 63 6f 6e 20 47 72 61 70 68 69 63 73 2c |ilicon Graphics, |
e01d8160: 20 49 6e 63 2e 20 20 48 6f 77 65 76 65 72 2c 20 | Inc. However, |
e01d8170: 74 68 65 20 61 75 74 68 6T 72 73 20 6d 61 6b 65 |the authors make|
e01ds180: 20 6e 6T 20 63 6c 61 69 6d 20 74 68 61 74 20 4d | no claim that M|
e01d8190: 65 73 61 Oa 20 69 73 20 69 6e 20 61 6e 79 20 77 |esa. is in any w|
e01d8lab: 61 79 20 61 20 63 6f 6d 70 61 74 69 62 6¢c 65 20 |ay a compatible |
e01ld81lbo: 72 65 70 6¢ 61 63 65 6d 65 6e 74 20 66 6T 72 20 |replacement for |
e01d81lcO: 4f 70 65 6e 47 4c 20 6f 72 20 61 73 73 6T 63 69 |OpenGL or associ|
e01d81do: 61 74 65 64 20 77 69 74 68 Oa 20 53 69 6¢c 69 63 |ated with. Sili

e01d8le0: 6T 6e 20 47 72 61 70 68 69 63 73 2c 20 49 6e 63 |on Graphics, In_
e01d81fe: 2e Ba 20 2e Oa 20 54 68 69 73 20 76 65 72 73 69 |.. .. This versi|
e01d8200: 6f 6e 20 6f 66 20 4d 65 73 61 20 70 72 6f 76 69 |on of Mesa provi|
e01d8210: 64 65 73 20 47 4c 58 20 61 6e 64 20 44 52 49 20 |des GLX and DRI |
e01d8220: 63 61 70 61 62 69 6¢c 69 74 69 65 73 3a 20 69 74 |capabilities: it|
e01d8230: 20 69 73 20 63 61 70 61 62 6c 65 20 6T 66 6a 20 | is capable of. |
e01d8240: 62 6T 74 68 20 64 69 72 65 63 74 20 61 6e 64 20 |both direct and |
e01d8250: 69 6e 64 69 72 65 63 74 20 72 65 6e 64 65 72 69 |indirect renderi|
e01d8260: 6e 67 2e 20 20 46 6f 72 20 64 69 72 65 63 74 20 |ng. For direct |
e01d8270: 72 65 6e 64 65 72 69 6e 67 2c 20 69 74 20 63 61 |rendering, it ca|
afider?2n: e 20 75 72 A5 20 A4 52 A9 A3 20 Bd BF BA 75 G- In uca DRT modnull

TARGET: 41:45

o Kernel addresses in user space are a problem

REFRESHING

‘MEMORIES

Meltdown Mitigation

o Kernel addresses in user space are a problem
o Why don't we take the kernel addresses...

Meltdown Mitigati

fion

e ..and remove them if not needed?

REFRE: SHING

LEE)

‘MEMORIES

Melidewn Mitiga

%@% ﬂiuc

‘MEMORIES

e ..and remove them if not needed?
o User accessible check in hardware is not reliable

Meltdown-US Mitigafi

fion

o Unmap the kernel in user space

REFRESHING

LEE)

‘MEMORIES

Meltdown-US Mitig

o Unmap the kernel in user space
« Kernel addresses are then no longer present

Meltdown-US

'@' o Unmap the kernel in user space

- « Kernel addresses are then no longer present
..@. « Memory which is not mapped cannot be

accessed at dll

KAISER s

‘MEMORIES

@ Userspace

@ Kernelspace

Operating Memory

Applications
System

KAISER

Kernel View

@ Userspace

@® Kernelspace

o’

Applications

=

Operating Memory
System

REFRESHING

‘MEMORIES

User View

@ Userspace ® Kernelspace

~

Applications

a Foreshadow-NG) e

‘MEMORIES

Meltdown-P (ak

Page Table

1 PTEO
PTEI

PTE #PTI |

PTE SlI

Cache

REFRESHING

Meltdown-P (oka Foreshadow-NG) (P2
‘MEMORIES
Page Table
PTEO K
PTE |
E t
R

Cache

REFRESHING

Meltdown-P (aka Foreshadow-NG) vy
‘MEMORIES
Page Table
PTEO
PTEI

: | present Guest Physical
PTEf$T' to Host Physical

f PTESN

Cache

REFRESHING

Meltdown-P (aka Foreshadow-NG) vy
‘MEMORIES
Page Table
PTEO |
PTE |
PTE#PTI present Guest Phgslc.oxl Rhgaical
3 to Host Physical
: Page
PTE S
L | LI Lookup
Cache Ltk

physical address

Meltdown-P (aka Foreshadow-NG)
Page Table
PTEO
PTE I

: not present
~ PTE#PTI_
PTE SII

Cache

REFRESHING

7K

‘MEMORIES

Meltdown-P (aka Foreshadow-NG)

Page Table
PTEO
PTE I

| PTE #PTI

| __PTESI

not present

Ll lookup
with
virtval address

LI
Cache

REFRESHING

LEE)

‘MEMORIES

REFRESHING

More and More Performaonce K

—:_—9

‘MEMORIES

The future is going to be fast:

« Apple Al2 Bionic (iPhone X): I6KB pages — 128KB
caches

o Intel — more ports, more pardllelism, larger
reorder buffer

More and More Performance G}:&

‘MEMORIES

The future is going to be fast:

« Apple Al2 Bionic (iPhone X): I6KB pages — 128KB
———3 caches

—

e TR o Intel — more ports, more pardllelism, larger
reorder buffer

o AMD — perceptron-based prediction
mechanisms

robm@homebox ~% Sudo su
Possword:

robm is not inthe sudoers file.
This incident will be reported.
robm@homebox ~§

HEY — WHO DOES
SUDO REPORT THESE
INCIDENTS” 70?7

YOU KNOU, TVE
NEVER CHECKED.

https://xkcd.com/838/

A

Specula

tive Execution

Let uvs get rid of
bottlenecks

Speculative Execution

Use the
navghty/nice list
of last year

Speculo

tive Execution K H

LN Finally, check

predictions with
list of this year

Speculative Execution

Throwing away
wrongly manufac-
tured presents

Specula

itive Execution

Correct
predictions
result in
free time

Specire-PHT (a

LUT

’«,,%

char*x data =

if (index <

Prediction

LUT [data[index] * 1

b

)

REFRESHING

7K

‘MEMORIES

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

Predic tion

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

REFRESHING

7K

‘MEMORIES

Specire-PHT (aka

Spectre Varia

LUT index = 0;

char*x data = ;

if (index < 4)

AN e
A

Prediction

Specuvlate

LUT [data[index] *] 0

LUT

Specire-PHT (cka

index = 0;
char* data = "t

if (index <

Execute
ef\ £
Predtc tion

LUT [data[index] *

REFRESHING

LEE)

‘MEMORIES

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

Prediction

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

Prediction

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

REFRESHING

iant I) LEE)

‘MEMORIES

Specire-PHT (aka

Specire Vg

LUT

index = |;
charx data = 5
if (index < 4)
ndex ‘& Specuvlate . y
() e
X @ Se
Predic tion
LUT [data[index] *] 0

REFRESHING

LEE)

‘MEMORIES

Specire-PHT (cka

Specire Vg

LUT

index ;
char* data = e ;

if (index < 4)

e %
& @ S

Predic tion

LUT [data[index] *] 0

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

LUT [data[index] *

]

Prediction

b

)

REFRESHING

7K

‘MEMORIES

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

LUT [data[index] *

]

Prediction

b

)

REFRESHING

7K

‘MEMORIES

REFRESHING

7K

‘MEMORIES

Specire-PHT (aka

LUT index = ;
char*x data = ;
if (index < 4)
Specuvlate
e I ¥
o AN ®
Predic tion
[Index "' |

— LUT [data[index] *] 0

REFRESHING

Specire-PHT (oka Specire Variant I) Kb
LUT ThdSRy=""2;
char* data = X 3

if (index < 4)

Prediction

Ina%x'x'
LUT [data[index] *] 0

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

Prediction

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

Prediction

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

REFRESHING

7K

‘MEMORIES

Specire-PHT (aka

LUT index = °;
charx data = 5

if (index < 4)
Specuvlate

O @/

SN R
mm Predic tion

LUT [data[index] *] 0

REFRESHING

LEE)

‘MEMORIES

Specire-PHT (cka

Specire Varic

LUT

index ;

char*x data = t ;

if (index < 4)

Prediction

LUT [data[index] *] 0

Specire-PHT (a

LUT

’«,,%

Spectre Varia

charx data =

if (index <

Prediction

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

Prediction

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

Specire-PHT (¢

LUT

2 %99

Spectre Varia

charx data =

if (index <

Specuvlate

5D

Prediction

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

REFRESHING

LEE)

‘MEMORIES

Specire-PHT (cka

LUT

index = 4;
char*x data = K ;

if (index < 4)

N e
2 e
X % %

Prediction

Execute

LUT [data[index] *] 0

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

Prediction

LUT [data[index] *]

b

)

REFRESHING

7K

‘MEMORIES

REFRESHING

7K

‘MEMORIES

Specire-PHT (aka

Spectre Varia

LUT index = 5;

char*x data = Y2

if (index < 4)

Prediction

LUT [data[index] *] 0

charx data =

if (index <
Specuvlate

Prediction

LUT [data[index] *]

)

REFRESHING

LEE)

‘MEMORIES

REFRESHING

LEE)

‘MEMORIES

Specire-PHT (cka

Spectre Varia

LUT

index = 5;

char*x data = Y2

if (index < 4)

Execute

Prediction

LUT [data[index] *] 0

Specire-PHT (a

LUT

’«,,%

charx data =

if (index <

LUT [data[index] *

]

Prediction

b

)

REFRESHING

7K

‘MEMORIES

Specire-PHT (a

LUT

’«,,%

Spectre Varia

charx data =

if (index <

LUT [data[index] *

]

Prediction

b

)

REFRESHING

7K

‘MEMORIES

charx data =

if (index <

Specuvlate

LUT [data[index] *

]

Prediction

b

)

REFRESHING

7K

‘MEMORIES

REFRESHING

LEE)

‘MEMORIES

Specire-PHT (cka

LUT

index = ©;
char*x data = o

if (index < 4)

N)
AN &

Prediction

Execute

LUT [data[index] *] 0

Spectre-BIB (aka

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

REFRESHING

LEE)

‘MEMORIES

Specire-BIB (a

140

Spectre Variant 2)

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

REFRESHING

LEE)

‘MEMORIES

Specuvlate

Spectre-BIB (aka

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

REFRESHING

LEE)

‘MEMORIES

Spectre-BTB (ako

Animal* a = 3
a->move ()
Execute
Q
07\
Prediction
LUT [data[index] *]

REFRESHING

LEE)

‘MEMORIES

Spectre-BIB (aka

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

REFRESHING

LEE)

‘MEMORIES

Spectre-BTB (ako

Animal* a = 3
a->move ()
Specuvlate
Q
@7\
Prediction
LUT [data[index] *]

REFRESHING

LEE)

‘MEMORIES

Spectre-BIB (aka

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

REFRESHING

LEE)

‘MEMORIES

Spectre-BIB (aka

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

REFRESHING

LEE)

‘MEMORIES

Spectre-BTB (ako

Animal* a = 3
a->move ()
Specuvlate
Q
Q;X
Prediction
LUT [data[index] *]

REFRESHING

LEE)

‘MEMORIES

Spectre-BIB (aka

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

REFRESHING

LEE)

‘MEMORIES

Spectre-BIB (aka

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

Execute

REFRESHING

LEE)

‘MEMORIES

Spectre-BIB (aka

Animal* a =

LUT [data[index] *

a->move ()

Prediction
]

REFRESHING

LEE)

‘MEMORIES

Spectre-RSB

Vic tim

RS

function()

R

RSB

Attacker

REFRESHING

‘MEMORIES

Spectre-RSB

Vic tim

B}

function()

R0

RSB

REFRESHING

‘MEMORIES

Attacker

reg = dummy

Spectre-RSB

reg = secret

call function(SHORT)

function()

RSB

&victim

Attacker

reg = dummy

REFRESHING

7K

‘MEMORIES

Spectre-RSB {;‘1-'-%

‘MEMORIES

function()

Vic tim Attacker

reg = secret reg = dummy
call function(LONG)

data[reg * 4096]

call function(SHORT)

RSB

&attacker

&victim

REFRESHING

Spectre-RSB Kb

‘MEMORIES

function()

Vic tim Attacker

reg = dummy

reg = secret

call function(LONG)
datalreg * 4096]

call function(SHORT)

RSB

&attacker

&victim

Spectre-RSB {;‘1-'-%

‘MEMORIES

function()

Vic tim Attacker

reg = secret

reg = dummy
call function(LONG)
data[reg * 4096]

call function(SHORT)

RSB

&victim

Spectre-RSB {;‘1-'-%

‘MEMORIES

function()

Vic tim Attacker

reg = secret

reg = dummy
call function(LONG)
datalreg * 4096]

call function(SHORT)

RSB

&victim

Meltdoewn vs. Spectre

time

REFRESHING

LEE)

‘MEMORIES

Meltdoewn vs. Spectre

operation #n

time

REFRESHING

‘MEMORIES

Meltdoewn vs. Spectre

prediction

operation #n+2

time

REFRESHING

‘MEMORIES

Meltdoewn vs. Spectre

prediction

possibly
architectural) transient execution

T} =T

REFRESHING

LEE)

‘MEMORIES

Meltdoewn vs. Spectre

e

prediction

operation #n+2

possibly
__architectural] transient execution ! |

0

time

REFRESHING

LEE)

‘MEMORIES

Meltdoewn vs. Spectre

e

flush pipeline
on wrong
prediction

prediction

possibly
architectural

1 transient execution /
e
[}

REFRESHING

LEE)

‘MEMORIES

Meltdoewn vs. Spectre

[retire]

possibly
architectural

flush pipeline
on wrong
prediction

] transient execution L
e i R —— e~~~
1

REFRESHING

‘MEMORIES

Meltdown vs. Specire

o |

retire

flush pipeline
on wrong
prediction

possibly
architectural 1

REFRESHING

‘MEMORIES

time

Meltdown vs. Spectre e

‘MEMORIES

operation #n E AN, i operation #n
on wroi

ng
prediction

I
1 \

operation #n+2 E ;

retire

possibly
architectural 4 transient execution L
e T <D !
T ~>
time time

Meltdoewn vs. Spectre

i

possibly
architectural

flush pipeline
on wrong
prediction

! transient execution !
e e
I}

data dependency

operation #n+2

time

REFRESHING

‘MEMORIES

Meltdoewn vs. Spectre

possibly
architectural

flush pipeline
on wrong

prediction

it transient execution 4

T

=

REFRESHING

‘MEMORIES

oo |

exception ———————>

(retire]

possibly
architectural ! transient execution !

: >
time

Meltdoewn vs. Spectre

REFRESHING

‘MEMORIES
o L o
operation #n = AN, i operation #n
= on wrong
prediction g
exception
prediction
"Q LOL \ 1
LR} : L
oW . VY
auv operation #n+2 ., (3
possibly] 1= possibly
"] - - i P -
architectural : transient execution + e architectural : transient execution /ij7
time time

Meltdoewn vs. Spectre

operation #n E flush’ pipeline
1 on wrong

prediction

prediction

1] 1
1

operation #n+2 ': E

possibly
architectural 4 transient execution i A

- >
time

REFRESHING

‘MEMORIES

retire

exception ——M—— >

data Meltdown
W, =

data dependency |
1

1
1
) | operation #n+2 |
possibly | k

architectural) transient execution !
e o e — i — i =
1 [l

time

Meltdoewn vs. Spectre

[9)
i 9
operation #n [Gy i
] on wrong
prediction

REFRESHING

7K

‘MEMORIES

e

exception —————————~—>raise

possibly possibly
i 1 i i 1 i U i i [}
architectural transient execution architectural _transient execution S
1 t "t 1
time time

More and More Performance G}:&

‘MEMORIES

The future is going to be fast:

« Apple Al2 Bionic (iPhone X): I6KB pages — 128KB
———3 caches

—

e TR o Intel — more ports, more pardllelism, larger
reorder buffer

o AMD — perceptron-based prediction
mechanisms

A
HRISTM/S
C’@ﬂ@

SPECTRES OF
THE FUTURE

—

]

‘MEMORIES

I

« Protection key for a grot

 of
» AL RAAAS
p Or pdges

Intel MPK

REFRESHING

LEE)

‘MEMORIES

« Protection key for a group of pages
« U bits in PTE identify key for protected memory
regions

Intel MPK vy

‘MEMORIES

» Protection key for a group of pages

o U bits in PTE identify key for protected memory
regions

o Quick update of access rights

Meltdown-PK

REFRESHING

i K

‘MEMORIES

» Protection keys are lazily enforced

Meltdown-PK

J

» Protection keys are lazily enforced
o Protected value is forwarded to transient
instructions

REFRESHING

7K

‘MEMORIES

REFRE: SHING

7K

‘MEMORIES

» x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

Meltdown-BR 5y

» x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

—> o Data used in fransient execution

Meltdown-BR 5y

» x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

—> o Data used in fransient execution

o Attacker determines accessed cache line using
Flush=Reload

Messages in this
thread

« First message in thread
= Tom Lendacky
* Dave Hansen
e Tom Lendacky
* Borislav Petkov
 tip-bot for Tom
Lendacky
o Pavel Machek
* Brian Gerst
e Thomas Gleixner

Patch in this message

« Get diff 1

From Tom Lendacky <>
Subject [PATCH] x86/cpu, x86/pti: Do not enable PTI on AMD processors
Date Tue, 26 Dec 2017 23:43:54 -0600

AMD processors are not subject to the types of attacks that the kernel
page table isolation feature protects against. The AMD microarchitecture
does not allow memory references, including speculative references, that
access higher privileged data when running in a lesser privileged mode
when that access would result in a page fault.

Disable page table isolation by default on AMD processors by not setting
the X86 BUG_CPU_INSECURE feature, which controls whether X86 FEATURE PTI
is set.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
arch/x86/kernel/cpu/common.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletlons()

diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c

index c47dede..7d9e3b0 100644

--- a/arch/x86/kernel/cpu/common.c

+++ b/arch/x86/kernel/cpu/common.c

@@ -923,8 +923,8 @@ static void _ init early identify cpu(struct cpuinfo x86 *c)

setup_force_cpu_cap(X86_FEATURE_ALWAYS) ;
= /* Assume for now that ALL x86 CPUs are insecure */
- setup_force cpu_bug(X86 BUG_CPU_INSECURE);
+ if (c->x86 vendor !'= X86 VENDOR _AMD)
+ setup_force cpu_bug(X86_BUG_CPU_INSECURE);

init_system(c);

fpu_ >

Messages in this
thread

« First message in thread
= Tom Lendacky
* Dave Hansen
e Tom Lendacky
* Borislav Petkov
 tip-bot for Tom
Lendacky
o Pavel Machek
* Brian Gerst
e Thomas Gleixner

Patch in this message

« Get diff 1

From Tom Lendacky <>
Subject [PATCH] x86/cpu, x86/pti: Do not enable PTI on AMD processors
Date Tue, 26 Dec 2017 23:43:54 -0600

AMD processors are not subject to the types of attacks that the kernel
page table isolation feature protects against. The AMD microarchitecture
does not allow memory references, including speculative references, that
access higher privileged data when running in a lesser privileged mode
when that access would result in a page fault.

Disable page table isolation by default on AMD processors by not setting
the X86 BUG_CPU_INSECURE feature, which controls whether X86 FEATURE PTI
is set.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
arch/x86/kernel/cpu/common.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletlons()

diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c

index c47dede..7d9e3b0 100644

--- a/arch/x86/kernel/cpu/common.c

+++ b/arch/x86/kernel/cpu/common.c

@@ -923,8 +923,8 @@ static void _ init early_identify cpu(struct cpuinfo_x86 *c)

setup_force_cpu_cap(X86_FEATURE_ALWAYS) ;
- /* Assume for now that ALL x86 CPUs are insecure */
- setup force cpu bug(X86 BUG CPU INSECURE);
+ if (c->x86_vendor !'= X86_VENDOR_AMD)
+ setup_force_cpu_bug(X86_BUG_CPU_INSECURE) ;

init_system(c);

fpu__init_

Messages in this
thread

« First message in thread
= Tom Lendacky
* Dave Hansen
e Tom Lendacky
* Borislav Petkov
 tip-bot for Tom
Lendacky
o Pavel Machek
* Brian Gerst
e Thomas Gleixner

Patch in this message

« Get diff 1

From Tom Lendacky <>
Subject [PATCH] x86/cpu, x86/pti: Do not enable PTI on AMD processors
Date Tue, 26 Dec 2017 23:43:54 -0600

AMD processors are not subject to the types of attacks that the kernel
page table isolation feature protects against. The AMD microarchitecture
does not allow memory references, including speculative references, that
access higher privileged data when running in a lesser privileged mode
when that access would result in a page fault.

Disable page table isolation by default on AMD processors by not setting
the X86 BUG_CPU_INSECURE feature, which controls whether X86 FEATURE PTI
is set.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
arch/x86/kernel/cpu/common.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletlons()

diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c

index c47dede..7d9e3b0 100644

--- a/arch/x86/kernel/cpu/common.c

+++ b/arch/x86/kernel/cpu/common.c

@@ -923,8 +923,8 @@ static void _ init early_identify cpu(struct cpuinfo_x86 *c)

setup_force_cpu_cap(X86_FEATURE_ALWAYS) ;
- /* Assume for now that ALL x86 CPUs are insecure */
- setup force cpu bug(X86 BUG CPU INSECURE);
+ if (c->x86_vendor !'= X86_VENDOR_AMD)
+ setup_force_cpu_bug(X86_BUG_CPU_INSECURE) ;

init_system(c);

fpu__init_

REFRESHING

‘MEMORIES

» x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

o Data used in fransient execution

o Attacker determines accessed cache line using
Flush=Reload

o First Meltdown-type attack on AMD

REFRESHI iNG

ble Vendors K

‘MEMORIES

Vulnerg

S Q2 MgV ok F K% WO S OO
FL SIS S R SIS S . e e S S
Attack ‘@‘ & e\“v&“@\‘@& & é‘@s&@é‘@&@é‘@s&
Vendor
*

2
cee
CREONO®
cee
O =0
cee
2 R
o % %
% % %
% % %
o
% % %
X %

i

Meltdown Defense Categorization

Meltdown defenses in 2 categories:

Meltdown Defense Categorization

Meltdown defenses in 2 categories:

DI Architecturadlly inaccessible
data is also microarchi-
tecturdlly inaccessible

REFRESHI iNG

LEE)

‘MEMORIES

REFRESHING

tion K

‘MEMORIES

Meltdown Defense Categoriza

Meltdown defenses in Z categories:
o

DI Architecturally inaccessible D2 Preventing occurrence of
data is also microarchi- faults
tecturdlly inaccessible

Meltdown-P Mitigc

ytion

REFRE: SHING

LEE)

‘MEMORIES

Meltdown-P Mitigation

Clear phyiscal address field of
unmapped PTEs

REFRESHI iNG

7K

‘MEMORIES

Meltdown-P Mitigation

Clear phyiscal address field of
unmapped PTEs

7K

‘MEMORIES

ﬁ

Flush LI upon switching
protection domains

° mo

Transient Execution Attacks: Classifica

Transient
cavse?

REFRESHING

7K

‘MEMORIES

onsient Execution Attacks: Classif

{ Transient
\ cavse?

o

Heltdown-type \

REFRESHING

LEE)

‘MEMORIES

Transient
cavse?

ﬂeltdown-tgpe \

Spectre-STL

REFRESHING

‘MEMORIES

Specire: Mistrain

Vic tim

Spectre-

same address space/
in ol vulnerable
N pace branch

REFRESHING

LEE)

‘MEMORIES

Specire: Mistraining Strc

o

Jtegies

Vic tim

same address space/ Aliased
out of place ‘ branch

©
@
o
©
)
-
<

<
S
]
o
o

Spectre-

same address space/
inplace

vulnerable
branch

REFRESHING

LEE)

‘MEMORIES

Specire: Mistraining Strc

o

Jjtegjies

Vic tim

same address space/ Aliased

ovt of place br

anch

ol S
®|.8
|3
=
o=
T/l o
<) o

Spectre-

same address space/

vulnerable

Mplaee branch

Shared Branch Predic tion State

REFRESHING

LEE)

‘MEMORIES

REFRESHING

Spectre: Mistraining Strategies K-

‘MEMORIES

Vic tim Attacker

same address space/ Aliased
out of place branch

ol S
]
o)'g
cf2
] past
=1
<) o

Spectre-
vulnerable
branch

same address space/
inplace

Shared Branch Predic tion State

Specire: Mistr

REFRESHING

LEE)

‘MEMORIES

Attacker

same address space/ Aliased
out of place branch

ol €
9l
0|3
cl=
o)=
oo
<| o

dd y Spectre- dd y
.same address space volnerable Same address f:ross address space
inplace inplace
‘ branch

Shared Branch Predic tion State

Specire: Mistr

REFRESHING

LEE)

‘MEMORIES
Vic tim Attacker
same address space/ | Aliased Aliased lcross address space/
ouvt of place branch address ouvt of place

Address

collision

_RAddress
collision

Spectre-
same address space/
vulnerable

inplace branch

cross address space/

Same address .
inplace

Shared Branch Predic tion State

able Vendors e

‘MEMORIES

Specire Mistraini

@ ' ‘$¢ S%’s‘\
\(93\\:“9&3&(9

Attack % 8% 2% e
ety SRR R

REFRESHING

oble Vendors g

‘MEMORIES

A0 o A\
Attack ec“§%3‘5§‘°5
PR RV
Method THRIN N
in-place)

same-address-space out-of-place

in-place

o e O
cross-address-space out-of-place * ® @ O

Spectre Mistrai

ning: Vulnerable Vendors

P NE NS S
TR
e Attack SQQ SQG SQG SQG

% Y in-place o . .x 0o

el D N ol-of-plocoRbast @ MO L &
g g in-place OO,
cross-address-space out-ofplace x ® ® O
] 3 in-place e x o o

ARM e TTPOCR wcoutofeplacelk Lo Ae JORBEL X
7 1 in-place i@’ ©
cross-address-space out-ofplace * * * O

REFRESHING

LEE)

‘MEMORIES

REFRESHING

Specire Mistraining: Vulnerable Vendors Kb
‘MEMORIES
0 GO R v
A
e Attack SQQ SQG SQG sQe
% Y in-place o . .x 0o
el D N ol-of-plocoRbast @ MO L &
g g in-place OO,
cross-address-space out-ofplace x ® ® O
] 3 in-place e x o o
ARM e TR0 outofphce e e O
7 1 in-place i@’ ©
cross-address-space out-ofplace * * * O
E) in-place e x *x o
AMD - f?rj‘i‘{df’f?{sisf’?f? _ out-of-place * * x O
- 3 in-place R SO o~ (s
cross-address-space out-of-place * * % O

Super Effective Solution: Drilling template

Y7 Drilling template (@kreon.nrw)

Specire Defense Categorization

Spectre defenses in 3 categories:

Spectre Defense Categorization KT H.

‘MEMORIES

Spectre defenses in 3 categories:

e

Cl Mitigate or
reduce accuracy
of covert channels

Specire Defense Categorization

Spectire defenses in 3 categories:

&

Cl Mitigate or C2 Mitigate or
reduce accuracy abort speculation
of covert channels

REFRESHI iNG

‘MEMORIES

Specire Defense Categorizati

Spectre defenses in 3 categories:

&

Cl Mitigate or
reduce accuracy
of covert channels

C2 Mitigate or
abort speculation

REFRESHING

7K

‘MEMORIES

1

C3 Ensure secret
cannot be reached

REFRESHING

LEE)

Specire Defenses: Microarchitectural Target

‘MEMORIES

@) 9 ©
of ©-.©
O 01 [©
O @NE©
© CR@
@ © @
o O O
OONIC.
(@07, (@

c2

Cache @ @ @ O ©
TlB © @ © O O
il one© © ©
BHB 0 0 0 0 ©
PHIS e Yol o=@
RSB o o 0 0 O
AVX 0 0 0 0O O
EPUReROR0 1o ,©
ExecutionPorts 0© 0 0 0 ©

JUBWIAIT |DINYIBHYIIDOIDIW

Cl

Category:

49

« Each site executed in its own process

REFRESHING

7K

‘MEMORIES

REFRESHING

LEE)

‘MEMORIES

« Each site executed in its own process
““““. — limits amount of data that is exposed

Site Isolation Vi

‘MEMORIES

« Each site executed in its own process
“&. — limits amount of data that is exposed
o Chrome 67: default, Firefox: work in progress

5l

Ser

i

« Insert instructions stopping speculation

REFRESHING

7K

‘MEMORIES

5l

vy

« Insert instructions stopping speculation
— insert after every bounds check

REFRESHING

7K

‘MEMORIES

5l

REFRESHING

7K

‘MEMORIES

« Insert instructions stopping speculation
— insert after every bounds check

o x86: LFENCE , ARM: CSDB with conditional selects
or moves

InvisiSpec

o« Make ftransient loads invisible in the cache
hierarchy

REFRESHING

i K

‘MEMORIES

InvisiSpec

 Mdke transient loads invisible in the cache
hierarchy

ol

— dll fransient loads use a speculative buffer

REFRESHING

7K

‘MEMORIES

InvisiSpec

REFRESHING

LEE)

‘MEMORIES

 Mdke transient loads invisible in the cache
hierarchy

— dll fransient loads use a speculative buffer

o Correct prediction: buffer content loaded into
cache

InvisiSpee

REFRESHING

7K

‘MEMORIES

 Mdke transient loads invisible in the cache
hierarchy

— dll fransient loads use a speculative buffer

o Correct prediction: buffer content loaded into
cache

« Wrong prediction: transient load is reverted

REFRESHING

$iK

Specire: Defense Analysi

Defense

o ‘MEMORIES
g
4
Q
P
[21

Attack

REFRESHING

LEE)

‘MEMORIES

Defense

Attack

EEAEE NIRRT O () (DO 0 T @ < |)11 @
BN EREL GECES o () 5 O 0 F S Ll e ©
N E NI)IRGEGI (D © %0, O 8 W LE e <
O EPEREC L O RS @ 2 - & @ e LI [l

Spectre-PHT
Specire-BTB
Spectre-RSB
Spectre-STL

Intel

REFRESHING

LEE)

o
=
O
©
Q.
&2

‘MEMORIES

Defense

Attack

EEAEE NIRRT O () (DO 0 T @ < |)11 @
BESEPREL RN RO S () B O 0 oFes L o ©

Spectre-PHT
Specire-BTB
Spectre-RSB
Spectre-STL

HENERNERER OGRS 2 (e @ %0 @ e LI O ©
ONERERO . O 0 @ 20 & @ @ Oul LIy k()
EESEREPEO S O 0 O @ & < 0 (DU 0P 1<
O O 'O .08 @ Cni O OFFCHROSESAREOE FOT ORI ~0
[E SOOI MO B EOME O OREO I O HIER O et
H [OO CMOMROR @I O 5O s o IESOEREENS

Intel

Spectre-PHT
Spectre-BTB
Specire-RSB
Spectre-STL

ARM

REFRESHING

LEE)

o
=
O
©
Q.
&2

‘MEMORIES

Defense

Attack

EEAEE NIRRT O () (DO 0 T @ < |)11 @
BESEPREL RN RO S () B O 0 oFes L o ©

Spectre-PHT
Specire-BTB
Spectre-RSB
Spectre-STL

HENERNERER OGRS 2 (e @ %0 @ e LI O ©
ONERERO . O 0 @ 20 & @ @ Oul LIy k()
EESEREPEO S O 0 O @ & < 0 (DU 0P 1<
O O 'O .08 @ Cni O OFFCHROSESAREOE FOT ORI ~0
[E SOOI MO B EOME O OREO I O HIER O et
H [OO CMOMROR @I O 5O s o IESOEREENS

Intel

Spectre-PHT
Spectre-BTB
Specire-RSB
Spectre-STL

ARM

o N Y Y MR R e (D) w (ORSC,ae O ORRORF il [Fe(p) (1] ©
OO0 N Ofe CamO JURRO SOMN Wl NT_O HEORECNe
[S S S OTIRO SRS (D, SRR o dl IR N ©
ClanEemEE O 2O O SORRO OO & 0L O O IS TS

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

53

Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139,

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).

Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139,

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).

Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139,

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).

Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139,

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.

As covered yesterday, there is improved STIBP code on the way for Linux 4.20 that by
default just apply STIBP to SECCOMP threads and processes requesting it via prctl() but
otherwise is off by default (that behavior can also be changed via kernel parameters).

° mo

Transient Execution Attacks: Classifica

Transient
cavse?

REFRESHING

7K

‘MEMORIES

onsient Execution Attacks: Classif

(

Spectre-tgpe \

Transient
\ cavse?

Heltdown-type \

o

REFRESHING

LEE)

‘MEMORIES

Transient
cavse?

REFRESHING

‘MEMORIES

REFRESHING

on Y

Tronsient Execution Attacks: Clossific

‘MEMORIES
mistraining
strateg {Cross-address-space)
microarchitec- ¢ Spectre-PHT {Same-address-space

toral buffep/”n % =

{ Spectre-BTB)

(Spectre-type (" Spectre-RSB {(Groseadiiresapaee);
\ 9, e 3 ~
predic tion Cross-address—space \

Transient -

7
) {Same-address-space)
A cavse?) g y

favlt

Q

ﬂeltdown-tgpe \

Tronsient Execution Attocks: Clossif

microarchitec-
toral buffeg” /N

A Spectre-BTB)

Spectre-tgpe "V Spectre-RSB)
Py (Seecires]
predic tion

Transient
\ cavse?)

favlt

ﬁeltdown-type \

(" Spectre-PHT e

Cross-address-space \

Same-address-space \

Cross-address-space e

Same-address-space \

{Cross-address-space)

{\Same-address-space }

REFRESHING

@%-place (P) vs, out-of-place (OP) {5“4

‘MEMORIES

PHT-SA-IP)

BTB-CA-OP

RSB-CA-IP
RSB-CA-OP
RSB-SA-IP)

RSB-SA-OP

BTB-CA-IP)

Tronsient Execution Atto

=0

&

icks: Clossif

mistraining
f

strateg

microarchitec- & SpectrePHT
toral buffep/"A %

{ Spectre-BTB)

2 <
(Spectre-type) \ Spectre-RSB)
2 {SpectresTL)

&

predic tion

Transient
cavse?)
favlt

@

ﬁe[tdoun-type \

%—place (P) vs, out-of-place (OP)

REFRESHING

K

PHT-CA-P «

Cross-address-spac ek
N> - PHT-CA-OP «

{Same-address-space)

PHTSAP)

\ PHT-SA-OP =«

Cross-address-spac el
e 4 BTB-CA-IP

{Same-address-space)

> \ BTB-CA-OP

Cross-address—space A BTB-SA-IP «

ame-nddress-spac e) BTB-SA-OP « \
\ RSB-CA-IP
RSB-CA-OP

RSB-SA-IP)

RSB-SA-OP

REFRESHING

@%-place (P) vs, out-of-place (OP) {5“4

Tronsient Execution Attocks: Clossif

mistraining ‘ PHT-CA-IP «
strateg ross-address-space TR
TT;:?;E?;:C:‘ “: Spectre-PHT } amemddress-space ; TSR \
‘l Spectre-BTB). e
(Spec tre-type) {_SpectreRse) CEETEEoTED), BTBCAP)

- ame-address-space)
n@ [Spectre-STL A g BTBCAOP |
o i (Cross-addressspace} BTBSAP:)

Transient

cavse?) ‘ A\ BTBSA-OPx)
fat m RSB-CA-IP

ﬁe[tdoun-type X

(

RSB-CA-OP__)

\ RSB-SA-IP)
{" Meltdown-PF)

A

RSB-SA-OP

favlt type

(MeltdownBR)

Meltdown-GP)

Tronsient Execution Attocks: Clossif

microarchitec-
toral buffeg

Spectre-tgpe ¥

P

predic tion

{ Transient

cavse?)
fault

Q

ﬁe[tdoun-type)

favlt type

mistraining
strateg

{Cross-address-space

Spectre-PHT),

’: Spectre-BTB)

'l Spectre-RSB Cross-address-space s
\ S y

Spectre-STL Same-address-space b

Cross-address—space)

\Same-address-space

A Meltdown-NM)
MeltdounAc. &
FeltdowrAC_§
TS
‘: Meltdown-PF)

o
{ Ml tdountb.

(" Meltdown8R
Meltdown-GP]

{ Same-address-space =

%—place (P) vs, out-of-place (OP)

REFRESHING

K

PHT-CA-P

\ PHT-CA-OPx)

PHT-SA-OP
ecr)
(oo)
(emsr.)
(e)
(resr)

RSB-SA-OP

Tronsient Execution

microarchitec-
toral buffer

pectre-tgpe

P

predic tion

{ Transient

cavse?
fault

Q

ﬁe[tdoun-tgpe \

favlt type

Attoeks: C

': Spectre-PHT

‘: Spectre-BTB)
'l' Spectre-RSB)

{ Spectre-STL)

A Meltdown-NM

e
\JleltdownAC.
o SRR T
J&(tdown-DE.J

‘: Meltdown-PF X

\/lj_eﬁdol@—.) oy

=7

=

(Tt taonss)
(" MeltdownBR)
Meltdown-GP)

mistraining
strateg

{ Ci

{Same-address-space)

‘.’

ross-address-space)

ross-address-space)

\Same-address-space)

ross-address-space)

Same-nddress-space \

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-MPX

%—place (P) vs, out-of-place (OP)

REFRESHING

K

PHT-CA-IP «

PHT-CA-OP

__PHTSAlP)
PHT-SA-OP«)
BTB-CAP)
BTB-CA-OP)
BTB-SAP+)
BTB-SA-OP -
RSB-CA-P)
RSB-CA-OP)
RSB-SAP)
RSB-SA-OP

REFRESHING

Transient Execution Aftacks: Classificationo FETL
mistraining PHT-CA-P «
strateg " d PHT-CA-OP «
microarchitec- 'L ST ‘

toral buffer,

'. : Spectre-BTB). (" pHT-SAOP -

7 '@ | (Cross-address-space h
(Spectre-tupe) < Spectre-RSB) \ pace) { BTB-CAP

- Same-address-space)
n@ _ Spectre-STL \g 9 d BTBCAOP ‘

predic tion Cross-address—space { BTB-SAIPx \
Transient

cavse? J {Same-address-space} BTB-SA-OP
fault Meltdown-NM) Meltdown-US) d RSBCAP ‘
@ Felisourac | -
{Meltdown-type o
4 - \yﬂflﬁ_d&m-DE._j\ MeltdownRW) ranr)

'; Meltdown-PF X

(

=

RSB-SA-OP

{ Meltdown-UD. B { MeltdownXD. %

(Meltdownss. % Meltdown-S. 4

(Meltdown-BR) Meltdown-MPX
Meltdown-GP)

favlt type

REFRESHING

Transient Execution Attaeks: C = B v T B

mistraining | PHT-CA-P«
strateg Cross-address-space k

\ PHT-CA-OPx

microarchitec- — (s -add -
{ Soectre-PHT (Same-address-space } ;
toral boffep A" o = . PHT-SA1P 4

< Spectre-BTB) \ PHT-SA-OP«)

s (Cross-address-s ace k
(Soectre-tupe) | SpectreRS8 \ pate { erecAbp)

Corredromares)
n@ SpectreSTL \ J { BTB-CA-OP

predic tion Cross-address—space) { BTB-SAIP«
{ Transient =
\ cavse?

Meltdown-US d RSB-CA-P

fault Meltdown-NM ‘

k%) el tdownAC | { Tieltaounr

i e : '

- - dﬂ_t_do_u}LDE .5 Meltdown-RW — RSBSAP \

':' Meltdown-PF X Meltdown-PKx RSB-SA-OP

RSB-CA-OP)

{Same-address-space] BTBSA0P.)

Py

Cetianar .} Cietioero b
fault type et T TN Y
(el tdounss § el tdoun 1. }

((Meltdown8R {_ Meltdown1PX
Meltdown-GP) Meltdown-BND «

Lessons leorned

D__

G.__

REFRESHI iNG

LEE)

‘MEMORIES

We have ignored microarchitectural attacks for
many yedars:

Lessons leorned

D._—

G._._

REFRE: SHING

LEE)

‘MEMORIES

We have ignored microarchitectural attacks for
many yedars:

o attacks on crypto

TR I -~ chvn 17, W o Lt RN gl SN GRS ey, CHLE D EE R ST S R el e T SHING
Lessons leorned K

‘MEMORIES

We have ignored microarchitectural attacks for
e many yedars:
E.. Sy o attacks on crypto — "software should be fixed"

G._._

Lessons leorned G?l"-it

‘MEMORIES

We have ignored microarchitectural attacks for
e many yedars:
« attacks on crypto — "software should be fixed"
E," : o attacks on ASLR

Lessons leorned G?l"-it

‘MEMORIES

We have ignored microarchitectural attacks for
e many yedars:
« attacks on crypto — "software should be fixed"
E," : o attacks on ASLR — "ASLR is broken anyway*

Lessons leorned K

We have ignored microarchitectural attacks for
e many years:
E.. Sy o attacks on crypto — "software should be fixed"
o attacks on ASLR — "ASLR is broken anyway*
— o attacks on TEES

Lessons leorned K

We have ignored microarchitectural attacks for
e many years:
E.. Sy o attacks on crypto — "software should be fixed"
o attacks on ASLR — "ASLR is broken anyway*
— o attacks on TEEs — "not within threat model”

Lessons leorned K

We have ignored microarchitectural attacks for
e many years:
[; Sy o attacks on crypto — "software should be fixed"

O] o attacks on ASLR — "ASLR is broken anyway*
o attacks on TEES — "not within threat model”
o Rowhammer

Lessons leorned K

We have ignored microarchitectural attacks for
e many years:
E.. Sy o attacks on crypto — "software should be fixed"

O] o attacks on ASLR — "ASLR is broken anyway*
o attacks on TEEs — "not within threat model”
o Rowhammer — "only some cheap modules”

Lessons learned

We have ignored microarchitectural attacks for
e many years:
o attacks on crypto — "software should be fixed"
E“ = o attacks on ASLR — "ASLR is broken anyway*
— o attacks on TEEs — "not within threat model”
o Rowhammer — "only some cheap modules"”

— for years we solely optimized for performance

Conclusion

7K

‘MEMORIES

Conclusion

2%

o Optimizations always come at a cost

REFRE: SHING

7K

‘MEMORIES

Conclusion

2%

REFRESHING

‘MEMORIES

o Optimizations always come at a cost

« Some mitigations cost more than gained by the
feature they defend

Conclusion nm

‘MEMORIES

E 3 o Optimizations always come at a cost
« Some mitigations cost more than gained by the
35:& feature they defend

 Transient-execution attacks will keep us busy
for a while

A CHRISTMpS (AROL

The Spectres of the Past, Present, and Future

Moritz Lipp ~ Michael Schwarz Claudio Canella Daniel Gruss

"Past" "Present” "Future" "Scrooge”
@mlgxyz @misc0110 @ccox1f @lavados:

— e == ’ N
S T o v,

e T o

