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The future is going to be fast:
———9 « Apple Al2 Bionic (iPhone X): I6KB pages — 128KB
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Miecroorchitecturdl

o Modern CPUs contain muitiple
microarchitectural elements

S O kbnT 3

/==
Caches and 8
buffer Predictor

o Transparent for the programmer
« Timing optimizations — side-channel leakage
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FOOD CACHE

Revolutionary concept!

Store your food at home,
never go to the grocery store
during cooking.

Can store ALL kinds of food.

ONLY TODAY INSTEAD OF $1,300

$1,299

ORDER VIA PHONE: +555 12345
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What could possibly go wrong with <insert x86
instruction here>?
Side effects include side-channel attacks and bypassing kernel ASLR

&8 Clémentine Maurice and Meritz Lipp
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What could possibly go wrong with
<insert x86 instruction here>?

Clémentine Maurice, Moritz Lipp
December 2016—33rd Chaos Communication Congress
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« Just by looking at cache hits/misses, we can ...

o Leak AES keys from the cache
« Leak keystroke timings via the cache
o Covertly send data through the cache
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The future is going to be fast:

« Apple Al2 Bionic (iPhone X): I6KB pages — 128KB
caches

« Intel — more out-of-order parallelism
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int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);
int area = width * height;

printf ("Area %d x %d = %d\n", width, height, area);




int width = 10, height = 5;

float diagonal = sqrt(width * width
+ height * height);
int area = width * height;

(printf("Area %d x %d = %d\n", width, height, area);
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1

Instructions are
« fetched and decoded in the front-end
« dispatched to the backend
» processed by individual execution units
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*(volatile charx) O0;
array [84 * 4096] = O0;




Building the Code e

‘MEMORIES

o An experiment

*(volatile charx) O0;
o array [84 * 4096] = O0;
« volatile because compiler was not happy

warning: statement with no effect [-Wunused-valuel]
*(charx*)0;



Building the Code e

‘MEMORIES

o An experiment

*(volatile charx) O0;
o array [84 * 4096] = O0;

« volatile because compiler was not happy

warning: statement with no effect [-Wunused-valuel]
*(charx*)0;

« Static code analyzer is still not happy

warning: Dereference of null pointer

*(volatile charx*)O0;
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« Flush+Reload over dll pages of the array
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« Flush+Reload over dll pages of the array
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207

Access time
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« "Unreachable” code line was actually executed
o Exception was only thrown afterwards
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Building the Code

S
kA

o Out-of-order instructions leave
microarchitectural fraces

« We can see them for example in the cache
» We cdll them fransient instructions
o Execution indirectly observable
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o Add another layer of indirection to test

char data = *(charx*) Oxffffffff81a000e0;
array [data * 4096] = O0;
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o Add another layer of indirection to test

char data = *(char*) Oxffffffff81a000e0;
¢- array [data * 4096] = O0;

« Then check if any part of array is cached
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« Flush+Reload over dll pages of the array
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Access time
[cycles]
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Page

o Index of cache hit reveadls data
o Permission check fadils sometimes
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e01d8150: 69 6¢c 69 63 6f 6e 20 47 72 61 70 68 69 63 73 2c |ilicon Graphics, |
e01d8160: 20 49 6e 63 2e 20 20 48 6f 77 65 76 65 72 2c 20 | Inc. However, |
e01d8170: 74 68 65 20 61 75 74 68 6T 72 73 20 6d 61 6b 65 |the authors make|
e01ds180: 20 6e 6T 20 63 6c 61 69 6d 20 74 68 61 74 20 4d | no claim that M|
e01d8190: 65 73 61 Oa 20 69 73 20 69 6e 20 61 6e 79 20 77 |esa. is in any w|
e01d8lab: 61 79 20 61 20 63 6f 6d 70 61 74 69 62 6¢c 65 20 |ay a compatible |
e01ld81lbo: 72 65 70 6¢ 61 63 65 6d 65 6e 74 20 66 6T 72 20 |replacement for |
e01d81lcO: 4f 70 65 6e 47 4c 20 6f 72 20 61 73 73 6T 63 69 |OpenGL or associ|
e01d81do: 61 74 65 64 20 77 69 74 68 Oa 20 53 69 6¢c 69 63 |ated with. Sili

e01d8le0: 6T 6e 20 47 72 61 70 68 69 63 73 2c 20 49 6e 63 |on Graphics, In_
e01d81fe: 2e Ba 20 2e Oa 20 54 68 69 73 20 76 65 72 73 69 |.. .. This versi|
e01d8200: 6f 6e 20 6f 66 20 4d 65 73 61 20 70 72 6f 76 69 |on of Mesa provi|
e01d8210: 64 65 73 20 47 4c 58 20 61 6e 64 20 44 52 49 20 |des GLX and DRI |
e01d8220: 63 61 70 61 62 69 6¢c 69 74 69 65 73 3a 20 69 74 |capabilities: it|
e01d8230: 20 69 73 20 63 61 70 61 62 6c 65 20 6T 66 6a 20 | is capable of. |
e01d8240: 62 6T 74 68 20 64 69 72 65 63 74 20 61 6e 64 20 |both direct and |
e01d8250: 69 6e 64 69 72 65 63 74 20 72 65 6e 64 65 72 69 |indirect renderi|
e01d8260: 6e 67 2e 20 20 46 6f 72 20 64 69 72 65 63 74 20 |ng. For direct |
e01d8270: 72 65 6e 64 65 72 69 6e 67 2c 20 69 74 20 63 61 |rendering, it ca|
afider?2n: e 20 75 72 A5 20 A4 52 A9 A3 20 Bd BF BA 75 G- In uca DRT  modnull
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o Kernel addresses in user space are a problem
o Why don't we take the kernel addresses...
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e ..and remove them if not needed?
o User accessible check in hardware is not reliable
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« Kernel addresses are then no longer present



Meltdown-US

'@' o Unmap the kernel in user space

- « Kernel addresses are then no longer present
_..@._ « Memory which is not mapped cannot be

accessed at dll
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The future is going to be fast:

« Apple Al2 Bionic (iPhone X): I6KB pages — 128KB
———3 caches

—

e TR o Intel — more ports, more pardllelism, larger
reorder buffer

o AMD — perceptron-based prediction
mechanisms



robm@homebox ~% Sudo su
Possword:

robm is not inthe sudoers file.
This incident will be reported.
robm@homebox ~§

HEY — WHO DOES
SUDO REPORT THESE
INCIDENTS” 70?7

YOU KNOU, TVE
NEVER CHECKED.

https://xkcd.com/838/
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LUT index = 5;
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if (index < 4)

Prediction

LUT [data[index] * ] 0
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reg = secret

call function(SHORT)
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function()

Vic tim Attacker

reg = secret reg = dummy
call function(LONG)

data[reg * 4096]

call function(SHORT)
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The future is going to be fast:

« Apple Al2 Bionic (iPhone X): I6KB pages — 128KB
———3 caches

—

e TR o Intel — more ports, more pardllelism, larger
reorder buffer

o AMD — perceptron-based prediction
mechanisms
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regions
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» Protection key for a group of pages

o U bits in PTE identify key for protected memory
regions

o Quick update of access rights
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» Protection keys are lazily enforced
o Protected value is forwarded to transient
instructions
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» x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

—> o Data used in fransient execution
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» x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

—> o Data used in fransient execution

o Attacker determines accessed cache line using
Flush=Reload



Messages in this
thread

« First message in thread
= Tom Lendacky
* Dave Hansen
e Tom Lendacky
* Borislav Petkov
 tip-bot for Tom
Lendacky
o Pavel Machek
* Brian Gerst
e Thomas Gleixner

Patch in this message

« Get diff 1

From Tom Lendacky <>
Subject [PATCH] x86/cpu, x86/pti: Do not enable PTI on AMD processors
Date Tue, 26 Dec 2017 23:43:54 -0600

AMD processors are not subject to the types of attacks that the kernel
page table isolation feature protects against. The AMD microarchitecture
does not allow memory references, including speculative references, that
access higher privileged data when running in a lesser privileged mode
when that access would result in a page fault.

Disable page table isolation by default on AMD processors by not setting
the X86 BUG_CPU_INSECURE feature, which controls whether X86 FEATURE PTI
is set.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
arch/x86/kernel/cpu/common.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletlons( )

diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c

index c47dede..7d9e3b0 100644

--- a/arch/x86/kernel/cpu/common.c

+++ b/arch/x86/kernel/cpu/common.c

@@ -923,8 +923,8 @@ static void _ init early identify cpu(struct cpuinfo x86 *c)

setup_force_cpu_cap(X86_FEATURE_ALWAYS) ;
= /* Assume for now that ALL x86 CPUs are insecure */
- setup_force cpu_bug(X86 BUG_CPU_INSECURE);
+ if (c->x86 vendor !'= X86 VENDOR _AMD)
+ setup_force cpu_bug(X86_BUG_CPU_INSECURE);

init_system(c);

fpu_ >
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» x86 provides dedicated instruction raising #BR
exception if bound-range is exceeded

o Data used in fransient execution

o Attacker determines accessed cache line using
Flush=Reload

o First Meltdown-type attack on AMD
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Meltdown Defense Categorization

Meltdown defenses in 2 categories:
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Meltdown defenses in 2 categories:

DI Architecturadlly inaccessible
data is also microarchi-
tecturdlly inaccessible
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Meltdown Defense Categoriza

Meltdown defenses in Z categories:
o

DI Architecturally inaccessible D2 Preventing occurrence of
data is also microarchi- faults
tecturdlly inaccessible
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Meltdown-P Mitigation

Clear phyiscal address field of
unmapped PTEs
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Clear phyiscal address field of
unmapped PTEs

7K

‘MEMORIES

ﬁ

Flush LI upon switching
protection domains
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Super Effective Solution: Drilling template

Y7 Drilling template (@kreon.nrw)



Specire Defense Categorization

Spectre defenses in 3 categories:



Spectre Defense Categorization KT H.

‘MEMORIES

Spectre defenses in 3 categories:

e

Cl Mitigate or
reduce accuracy
of covert channels



Specire Defense Categorization

Spectire defenses in 3 categories:
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Cl Mitigate or C2 Mitigate or
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Spectre defenses in 3 categories:

&

Cl Mitigate or
reduce accuracy
of covert channels

C2 Mitigate or
abort speculation
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C3 Ensure secret
cannot be reached
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« Each site executed in its own process
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« Each site executed in its own process
““““. — limits amount of data that is exposed
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« Each site executed in its own process
“&. — limits amount of data that is exposed
o Chrome 67: default, Firefox: work in progress
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« Insert instructions stopping speculation
— insert after every bounds check
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« Insert instructions stopping speculation
— insert after every bounds check

o x86: LFENCE , ARM: CSDB with conditional selects
or moves
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 Mdke transient loads invisible in the cache
hierarchy

ol

— dll fransient loads use a speculative buffer
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 Mdke transient loads invisible in the cache
hierarchy

— dll fransient loads use a speculative buffer

o Correct prediction: buffer content loaded into
cache
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 Mdke transient loads invisible in the cache
hierarchy

— dll fransient loads use a speculative buffer

o Correct prediction: buffer content loaded into
cache

« Wrong prediction: transient load is reverted
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Linux 4.19.4 & 4.14.83 Released With STIBP Code
Dropped

Written by Michael Larabel in Linux Kernel on 24 November 2018 at 09:00 AM EST. 6 Comments

On Friday marked the release of the Linux 4.19.4 kernel as well as
4.14.83 and 4.9.139,

Greg Kroah-Hartman issued this latest round of stable point releases as
basic maintenance updates. While these point releases don't tend to be
too notable and generally go unmentioned on Phoronix, this round is
worth pointing out since 4.19.4 and 4.14.83 are the releases that end up reverting the
STIBP behavior that applied Single Thread Indirect Branch Predictors to all processes on
supported systems. That is what was introduced in Linux 4.20 and then back-ported to
the 4.19/4.14 LTS branches, which in turn hurt the performance a lot. So for now the
code is removed.
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We have ignored microarchitectural attacks for
e many years:
o attacks on crypto — "software should be fixed"
E“ = o attacks on ASLR — "ASLR is broken anyway*
— o attacks on TEEs — "not within threat model”
o Rowhammer — "only some cheap modules"”

— for years we solely optimized for performance
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 Transient-execution attacks will keep us busy
for a while



A CHRISTMpS (AROL

The Spectres of the Past, Present, and Future

Moritz Lipp ~ Michael Schwarz  Claudio Canella  Daniel Gruss

"Past" "Present” "Future" "Scrooge”
@mlgxyz @misc0110 @ccox1f @lavados:

— e == ’ N
S T o v,

e T o



